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Abstract. We show a computationally efficient approximation (cf. [1])
of a full analogy model (2, 3], implemented in a computer program, and
tested on the CoNLL2000 chunk tagging task [4], putting clause bound-
aries around mainly np and vp phrases. Our implementation showed to be
competitive with other memory based learners. It deviates only slightly
from the theoretical model. First, it implements a version of homogene-
ity check, which does not account fully for nondeterministic homogeneity.
Second, it allows feedback of the last classification, and thirdly it allows
centering on some central feature positions. Positions containing a) those
parts-of-speech tags and b) those words that are to be given a chunk tag
are given a weight which is given by how many match patterns that are
equally or more general. A match on two centered features gives its pat-
terns an extra weight given by the number of features. The results can
be summarized as follows: a) using only lexical features performs below
baseline. b) The implementation without anything extra, performs as the
baseline for five parts-of-speech features, and centering improves the re-
sults. c) Feedback on its own does not improve results, while feedback +
centering improves results more than just centering. Feedback on its own
makes results deteriorate. The results exceed F=92, which is comparable
with some of the best reported results for Memory Based Learning on
the chunk tagging task.

1 Introduction

Analogical modeling (AM) is a (memory based) method to evaluate the ana-
logical support for a classification [2,3,5]. Chandler [6] suggested AM as an
alternative to both rule based and connectionist models of language processing
and acquisition. AM defines a natural statistic, which can be implemented by
comparisons of subsets of linguistic variables, without numerical calculations [5].
The natural statistic works as a selection mechanism, selecting those patterns in
the database which most clearly points out a class for a novel pattern.

The original AM model compares all subsets of investigated variables. This
may cause an exponential explosion in the number of comparisons, which has
made it difficult to investigate large models with many variables (> 10) combined
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with large databases. Johnsen and Johansson [1] gives an accurate approximation
of AM. which considers all analogical support from the database. The essentia]
simplification (ibid.) is that each exemplar in the database only contributes with
its most specific match to the incoming pattern to be classified. This provides a
basis for directly comparing Skousens model to other models of memory based
learning (MBL). In MBL, an example E is classified as belonging to category
C by computing the score of E by going through the whole database. Skousens
model requires the computation of the full analogical set for E, which we can
now show to be approximated with resources that are close to a linear search
through the database. The Johnsen and Johansson [1] approximation reduces
the time complexity of the full analogical algorithm, but it may also simplify the
addition of mechanisms such as feedback of the last. classification, and putting
focus on central features. The results imply that memory based learning methods
are related by their evaluations of the nearest match set, where typically MBL
only selects nearest neighbors. The AM model always considers all members of
the database.

We will demonstrate that the proposed approximation reaches a high level
of performance on a popular tagging task [4], if the algorithm is extended by
mechanisms to focus on relevant features, as well as a mechanism of feedback of
the latest classification. Without these additional mechanisim, analogical mod-
eling gives fairly low performance on this type of larger scale tasks that involve
ambiguity and selecting a best alternative.

The implementation deviates slightly from the discussed, theoretical model.
First, it implements a sloppy version of homogeneity check, which does not
account fully for nondeterministic homogeneity. Second, it allows feedback of
the last classification, and thirdly it allows centering on some central feature
positions. The positions containing a) the parts-of-speech tags and b) the words
that are to be given a chunk tag are given a high weight, and their immediate left
and right context are given a lower weight. The weights are multiplied together
for every matching feature position.

The results can be summarized as follows: a) using only lexical features per-
forms below baseline. b) The implementation without anything extra, performs
as the baseline for five parts-of-speech features, and centering improves the re-
sults. ¢) Feedback on its own does not improve results, while feedback + centering
improves results more than just centering. Feedback only makes results deterio-
rate. The results reach F=92, which is comparable with the best reported results
for Memory Based Learning on the task.

We can show a computationally efficient approximation of a full analogy
model, implemented in a computer program, and tested on the CoNLL2000
chunk tagging task. This showed to be competitive with other memory bas
learners.

An empirical confirmation of the compntational complexity showed a very
slow increase with an increased number of features, although processing times

increased with more demands on memory, an effect. which is likely due to limits
on internal memory.
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We are presently not using feature weighting, such as information gain, which
typically works on the level of individual feature values. Future research involves
working on a method for automatically finding the relevant variables, and finding
optimal weights (focus) for these variables.

2 Background on AM

We will not go into details of analogical modeling, beyond what is necessary for
comparing it with memory based learning. Johnsen & Johansson [1] showed that
the outcome in AM can be determined by summing up scores for each match
pattern, where we only have to match the input once with all the examples in
the database.

Examples in the database and each new input are expressed by a vector
of feature values, similar to standard MBL. The operation of AM depends on
matches. Each feature value may either match, between an example and the new
input, or not. This creates a match vector where matches are encoded with a 1
and non-matches with 0, for example < 0,1,0,1,1 > for five features.

We may imagine these vectors as a pointer to a box where we collect all
the corresponding outcomes in the database. After we have gone through the
database, we can look in all the non-empty boxes (which typically is of a much
lower number than the number of examples), and observe the distribution of the
outcomes. We are interested in those boxes that contain only one outcome. We
call these boxes first stage homogeneous. Boxes with more than one outcome are
less important, and may be discarded if we find homogeneous boxes pointed to
by a more specific context, i.e. a match vector with more matches. The remaining
(non-empty) boxes need to be sorted according to how many matches the index
pattern contains. A more general pattern (e.g. < 0,0,1 > is either homogeneous
for the same outcome as the more specific pattern that it dominates (e.g. <
1,0,1>,<0,1,1 >,0r < 1,1,1 >), or it is indeed heterogeneous and should be
discarded.

A score(f(z)) is summed up for the number of homogenecous elements it
dominates. Each part in the summation corresponds to looking in one of the
above mentioned "boxes” (x). Each score for each box has an associated constant
¢z, which would give us the exact value for full analogical modeling, if it was
known.

The scoring of the analogical set expressed in mathematical notation is:

Z cpscore(0(x)) (1)

reM

where M is the match set, and z is a context in the match set.

The implication of the work in [1] is that the match set M, which is simple
to calculate, contains all the results necessary for computing the overall effect,
without actually building the whole analogical structure. In order to accurately
weigh each context we need to estimate how many extensions each homogeneous
pattern has. Johnsen and Johansson [1] develops a maximum and minimum
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bound for this. and also discusses the possibilities for using Monte Carlo methods
for discovering a closer fit.

Let us start with a simple and hypothetical case where M has exactly two
members x and y with a different outcome. Any supracontextual label shared
between z and y will be heterogeneous. The number of these heterogeneous labels
are eractly the cardinality of the power set of the intersection between x and y.
To see this, consider an example

7= (c.a,t,e,g,0,1,y)
and let z and y be defined as (using supracontextual notation):

z=(c,—t,— — 0,7, )
with unique score(f(z)) = (3,0) =3 r

y=(ca,—,——,0,——) (2)
with score(f(y)) = (0,8) =8 e
Their common and therefore heterogeneous supracontextual labels are
(¢, —y—y=y—0, = —
T i @)

The total number of elements that dominate z is sixteen; the homogeneous
labels out of these sixteen are those that dominate = and no other element with
a different outcome: in this case y. The labels z shares with y are the four labels
in (3), and x has 16-4=12 homogeneous labels above it. How is that number
reached using sets?

Viewed as sets, the elements z and y are represented as:

T = {(‘1. t3, 0s, 7‘7} and y= {C],(l'z, 0(;}.

Their shared supracontexts are given by the power set of their common vari-
ables.

TNy = {L‘],[;;,()(,‘,l'7} n {(’1.0'_),()(3} = {Cl,()(;}
P(xny) = (4)
7)({("170(5}) = {0v {cl-,o(i} 3 {OG} 1{Cl}}

This set has four elements all in all, which all are equivalent to the labels
in (3). The sets in (4) represent the heterogeneous supracontextual labels more
general than either x or y and these are the only heterogeneous supracontexts
in the lattice A of supracontextual labels, given the assumptions made above.

The power sets for 2 and y have 16 and 8 elements respectively. so the total
number of homogeneous supracontextual labels more general than either z or Yy
is the value for the coeflicients ¢, and ¢, from (1) calculated as:

16—4:12} (5)

It

¢ = [P(x) = P(zNy)|
¢y = |[P(y) = Pz Ny)|

Il

8-4=4
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Plugging these numbers into the formula (1) gives the score of the analogical
set for this case:

Z cxscore(6(z)) =

reM

= 12score(8(x)) + 4score(6(y))

=12(3,0) +4(0,8) (6)
= (36,0) + (0,32)

= (36,32)

In the general case however, the set M consists of more elements, complicat-
ing the computation somewhat. Each r € M may share a number of supracon-
textual elements with other elements of M that have a different outcome. The
situation may be as depicted in the following table, where columns are labelled
by elements of M (in boldface) with their associated hypothetical outcomes (in
italics).

Table 1. Accessing disagreement in M x M

M a, B h, d/

a, Plans) Pland)
8. [Pgna) Pgnn)
h, P(hng) Pihnd)

dyPiana) Pang) Pann)

Each cell in Table 1 is associated with the power set P(z N y). This power
set is only computed if the outcome of x is not equal to the outcome of y, and
both outcomes are unique. The intersection is computed for all labels with a non-
unique outcome, even for those with identical outcomes. If two elements are non-
unique, any label that is a subset of both will match up with their respective and
disjoint data sets (see propositions 1 and 2 in [1]), thereby increasing the number
of (lisagreomen(s, and consequently turning any such label into a heterogeneous
label. Note that a and h have the same outcome in this table making their
intersective cells empty.

Each non-empty cell corresponds to the simple case above. The com'plicat.ion
Stems from the fact that different cells may have non-empty intersections, i.e.,
it is possible that

Plang)NPland) #0

Arithmetic difference of the cardinality of the cells may be way off the mark,
due to the possibility that supracontexts may be subtracted more than once.
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Something more sophisticated is needed to compute the desired coefficients ¢,
A couple of approximations are given in the following.
The approximations are gotten at by first collecting all subcontexts different
from ain a set d(a):
8(a) = {x € Mlo(a) # o(z)}
This equation represents the column labels for the row for a. The total number
of homogeneous supracontexts (=c,) more general than a is the cardinality of
the set difference
Pla) - |J Plana) @

r€6(a)

The second term in (7) corresponds to the value of the function H in [1], and
is the union of the power sets in the row for a. It represents the collection of
supracontextual labels more general than a, which also are shared with another
subcontext. thus making all of them heterogeneous. The first term, I1(a), is the
set of all supracontextual labels more general than a. Therefore, the difference
between these two sets is equal to the collection of homogeneous supracontextual
labels more general than a. However, it is not the content of these sets that
concerns us here; the goal is to find the cardinality of this difference.

The cardinality of P(a) is given the normal way as

IP(@)) = 2!

but how are the behemoth union to be computed? This raises the question of
computing the union of power sets:

U Penz) @)

T€6(a)

The exponential order of the analogical algorithm stems from the computa-
tional complexity of this set. The union is bounded both from below and above.
A lower bound is:

P(maz({anNz|z € §(a)})

and a higher bound is:

P( | anz)

r€d(a)

Both these bounds are fairly simple to calculate. In the implementation (writ-
ten in C). we have chosen a weighted average between the lower bound and the
higher bound as a good approximation. We found that values that are weighted
in favor of the higher bound gave better performance. This is not equivalent to
say that the true AM values are closer to the higher bound.
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3 Results from the Implementation

We have evaluated the performance of our implementation using the chunk iden-
tification task from CoNLL-2000 [4]. The best performance was obtained by a
Support Vector Machine [7, F=93.48]. This implementation has the disadvan-
tage that it is computationally very intensive, and it might not be applicable to
much larger data sets. Their results have later improved even more for the same
task. The standard for memory based learning on this task is an F value of 91.54
[8], a value which can be improved upon slightly, as is shown by using a system
combining several different. memory-based learners [9, F=92.5]. Johansson (10]
submitted an NGRAM model which used only 5 parts-of-speech tags , centered
around the item to be classified. That model (ibid.) used a backdown strategy
to select the largest context attested in the training data, and gave the most
frequent class of that context. It used a maximum of 4 look-ups from a table,
and is most likely the fastest submitted model. The table could be created by
sorting the database. The advantage being that it could handle very large data-
bases (as long as they could be sorted in reasonable time). The model gives a
minimum baseline for what a modest NGRAM-model could achieve (F=87.23)
on the chunking task.

3.1 Deviations from AM

The implementation deviates slightly from the discussed, theoretical model.
First, it implements a version of homogeneity check, which does not account
for non-deterministic homogeneity [2,3,5]. We tried a more extensive homo-
geneity check in an earlier version, but the results actually deteriorated. Second,
it allows feedback of the last classification, and thirdly it allows centering on
some central feature positions. The positions containing a) the parts-of-speech
tags and b) the words that are to be given a chunk tag are given a weight given
by how many more general patterns exist.

Giving Proper Weight on the Focussed Items The number of patterns
with a lower or an equal number of hits is given by:

hats hits hits ;
a) Z (71) b) n Z (”) c) Z ( 1) /n; (9)
k=0 k k=0 k k=0 k

The term hits refers to the number of matching features in the match pattern
we are considering. Formula a) in 9 refers to the case where we have found one
centered feature. Formula b) refers to when both centered features have been
found, and finally formula c) refers to when none of the centered features have
been found. In the case that none of the features have been found the effect is
spread evenly over the available variables (feature positions). If one matching
centered feature is found the effect is concentrated to one, and if both centered
features match we might have choosen the second centered feature in n — 1 ways.
We have added 1, in part to make the formulas more uniform.
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3.2 Performance

Johansson Ch. and Johnsen L.

From Table 2 we can see that using only lexical features (i.e.

performs

(F=87.65), performs only slightly

speech features, and centering improves .
a small effect (87.39; 6 pos, 82.95 6 lex), while feedback + Cf%ntermg
) improves results compared to just centering. Feedback does
centering allows some of those

6 pos, 87.69; 6 lex

introduce some mistakes from the mechanism, and

to be corrected.

Table 2. Results: F-scores. # features, Feedback + Centering, Centering only, Feed-

back only, nothing extra. Results within () are results without the binomial weighting

from eqn. 9c¢

better than

5 lex and 6 lex),
below baseline (F=87.23). The implementation without anything extra
the base line for five parts-of-
that to 88.50. Feedback on its own has

# |F+C C F 0
5 lex 85.95 82.50 (80.40)
5 pos 88.50 87.65 (87.13)
6 lex|87.69 82.95 (83.17)
6 pos|89.03 87.39 (87.02)
10 91.45 89.69 (89.48)
11 [92.23 89.58 (89.41)

The model with only centering using both lexical and parts-of-speech features
approaches MBL results, and performs slightly better with feedback and center-
ing (F=92.23, see Table 3), although not as good as the SVM-implementation (7,
nor the system combining several memory based learners [9].

Table 3. Detailed results for each category. (11 F+C)

selected [precision| recall [Fp=)
ADJP | 72.91% (67.58%|70.14
ADVP | 77.87% |78.41%|78.14
CONJP | 36.84% |77.78%|50.00
INTJ 100.00% |50.00%|66.67
NP 92.15% 193.29%|92.72
PP 95.91% [97.38%96.64
PRT 71.72% (66.98%|69.27
SBAR | 87.82% |82.24%|84.94
VP 92.21% |92.74%92.48
accuracy|precision| recall | FB1
95.13% | 91.86% [92.60%)92.23
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We have also tried out an idea of providing a model for novel items by
constructing instances where low frequency words were replaced by a marker
common to unseen words in the test set. This idea resulted in the same, or
slightly worse results. This indicates that the algorithm does not get any new
information from these added constructions, i.e. the information was already
available, and it showed to be fairly hard to alter the classification by adding
items to the database.

3.3 Computational Performance and Expected Complexity

The time complexity of the abstract algorithm for the worst case was asserted
to be O(log(N)N [1]. The current implementation has a nested loop over the
match set, which in the worst case may grow to be as large as the database. This
would make the algorithm O(N?) in the worst case. We do not expect that to
happen in the average case. What was the performance on the CoNLL task?

The tests were made using a 867MHz PowerPC G4, with 1 MB L3 cache and
256 MB SDRAM memory using Mac OS X version 10.3.9.

When the number of variables changed, the number of unique patterns varied.
The time to process all test patterns were therefor divided by the number of
unique database items and reported as how many milliseconds per database
item the processing took.

The results are shown in Table 4. This shows an almost linear increase with
the number of variables, which has to do with a) that more comparisons are
made because there are more variables (and features values) to compare, and
b) that the match set M grows slightly faster when there are more variables. A
deviation from the linear marks this increase in match set growth.

Table 4. Processing time needed to solve the full task, per item in the database.

# D ms
5 lex|213532 17.44
5 pos| 92392 17.84
6 lex |213562 19.14
6 pos| 92392 19.80

10 213562 26.07

11 (213591 28.68

When the size of the database is accounted for, the main contribution to
complexity is proportional to the square of the size of the match set times the
number of variables. That time expenditure does not grow faster indicates that
the match set does not grow very fast for this task. The values in Table 4 are
approximated by the formula: time = 0.05 % f2 4+ f + 11.5, with R? > 0.98; f
= number of variables, and time is in ms per database item, for processing all
49393 instances in the test set.
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4 Future Research

The relevant features for focus can be found automatically in many cases, by
looking at how the variable in general correlates with the outcome. This may
expand the model to consider more than two focussed variables.

We are presently not using feature weighting, such as information gain, which
typically works on the level of individual feature values. This might give some
room for future improvement.

5 Conclusion

We have shown an outline of a theoretical reconstruction of Skousen’s Analogj-
cal Modeling of Language [2,3,5], this is described in more detail elsewhere [1,
11). This reconstruction led to a more efficient approximation of full analogy
modeling, and the results were implemented in a computer program, and tested
on the CoNLL — 2000 chunk tagging task. Our implementation showed to be
competitive with other memory based learners, after accounting for the speci-
ficity of the match patterns and how many patterns were more general than the
pattern under consideration.

Admittedly, non-naive implementations of a nearest neighbor model, such
as TIMBL [12], are already doing well for large data sets, which make it hard
to compete on combined accuracy and processing time. The main contribution
of this model is that it implements a memory based model without the need
to specify how many nearest neighbors (or neighbor distances) to consider. In
the spirit of AM there are no parameters to set, and no calculation of gain for
knowing some individual item. We have added the possibility to center on par-
ticular variables, to separate them from context variables. We have also provided
the possibility to use feedback of the last categorization. As there are some ap-
proximations involved, we have made it possible to alter the weights to make
it possible to optimize the results. The highest performance reached so far has
been F=92.25 (compared to the reported F=92.23 for the standard settings).

The implementation has reached its level of performance without calculating
the information gain of knowing some individual feature values. In this, the
implementation follows the philosophy of parameterless analogical modeling. It
should be interesting for linguistic models that a model based on selection can
reach fairly high performance without calculating any statistics based on the
individual items.
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